Ableitung einer Potenzfunktion II

Ordne jeder Funktion der linken Tabelle die zugehörige erste Ableitungsfunktion der rechten Tabelle zu.

$f(x) = \frac{5}{\sqrt{x^3}}$	
$f(x) = 5 \cdot \sqrt{x^3}$	
$f(x) = \sqrt{5 \cdot x^3}$	
$f(x) = \frac{1}{\sqrt{5 \cdot x^3}}$	

A	$f'(x) = \frac{1}{\sqrt{15 \cdot x^2}}$
В	$f'(x) = 1, 5 \cdot \sqrt{5 \cdot x}$
C	$f'(x) = 7.5 \cdot \sqrt{x}$
D	$f'(x) = \frac{3}{2\sqrt{5 \cdot x^5}}.$
Е	$f'(x) = -\frac{15}{2 \cdot \sqrt{x^5}}$

AN 2.1.05

digi.schule/ amk8Ban21a05

Ableitungsregeln I

Gegeben ist die Funktion $s(t) = -t \cdot (2 \cdot t^2 + 5 \cdot t)$.

Welche Ableitungsregeln können beim Ableiten der Funktion s zur Anwendung gebracht werden? Kreuze alle Regeln an.

AN 2.1.06

digi.schule/ amk8Ban21a06

Ableitungsregeln II

Kreuze alle korrekt ausgeführten Ableitungen einer Funktion fan.

$f(x) = g(x) + a \cdot h(x) \Rightarrow f'(x) = g'(x) - h'(x)$	
$f(x) = a \cdot g(x) + b \cdot h(x) \Rightarrow f'(x) = a \cdot g'(x) + b \cdot h'(x)$	
$f(x) = g(x) + x \Rightarrow f'(x) = g'(x) + 1$	
$f(x) = g(x) + a \Rightarrow f'(x) = g'(x) + 1$	
$f(x) = g(k \cdot x) \Rightarrow f'(x) = k \cdot g'(x)$	

AN 2.1.07

digi.schule/ amk8Ban21a07

Ableitung einer reellen Funktion II

Gegeben ist die Funktion $h(x) = \frac{a}{\sqrt[q]{x^m}} + b \cdot x$. Bilde die erste Ableitung h'(x) der Funktion h. AN 2.1.08

digi.schule/ amk8Ban21a08

amk8Ban31a01

Ableitungsfunktion und Stammfunktion

Gegeben ist die Funktion $f(x) = \frac{1}{10} \cdot (3 \cdot x^2 - 2 \cdot x + 1)$.

Kreuze alle korrekten Aussagen an.

Die Funktion
$$b(x) = \frac{1}{10} \cdot (x^3 - x^2 + x)$$
 ist eine Stamfunktion von f.

Die Funktion
$$c(x) = 0.1 \cdot x^3 - 0.1 \cdot x^2 + 0.1 \cdot x + 0.1$$
 ist eine Stammfunktion von f.

Jede Funktion
$$d(x) = 0, 1 \cdot x^3 - 0, 1 \cdot x^2 + 0, 1 \cdot x + c$$
 mit $c \in \mathbb{R}^-$ ist eine Stammfunktion von f.

Die Funktion
$$e(x) = \frac{3}{5}$$
 ist eine zweite Ableitungsfunktion von f.

AN 3.1.02

diai.schule/ amk8Ban31a02

Stammfunktion I

Ordne jeder Funktion der linken Tabelle eine zugehörige Stammfunktion der rechten Tabelle zu.

$f(x) = \sqrt[3]{x}$	
$f(x) = \sqrt[4]{x^3}$	
$f(x) = \sqrt[3]{x^2}$	
$f(x) = \frac{1}{\sqrt{x}}$	

A	$F(x) = 0.6 \cdot \sqrt[3]{x^5}$
В	$F(x) = -\frac{3}{2} \cdot \sqrt[3]{x^{-2}}$
С	$F(x) = \frac{4}{7} \cdot \sqrt[4]{x^7}$
D	$F(x) = \frac{3}{4} \cdot \sqrt[3]{x^4}$
Е	$F(x) = 2 \cdot x^{0.5}$

amk8Ban31a03

Ableitungsfunktion und Stammfunktion II

Gegeben ist die Funktion $f: x \mapsto \frac{1}{x^3}$.

Kreuze alle korrekten Aussagen an.

Die Funktion $a(x) = \frac{1}{3 \cdot x^2}$ ist eine erste Ableitungsfunktion von f.	
Die Funktion $b(x) = -\frac{1}{2 \cdot x^2}$ ist eine Stammfunktion von f.	
Die Funktion $c(x) = 0.5 \cdot (-x^2 + 1)$ ist eine Stammfunktion von f.	
Die Funktion $d(x) = -3 \cdot x^{-4}$ ist eine erste Ableitungsfunktion von f.	
Die Funktion $e(x) = \frac{12}{x^5}$ ist eine zweite Ableitungsfunktion von f.	

AN 3.1.04

digi.schule/ amk8Ban31a04

Stammfunktion II

Zeige, dass die Funktion $F(x) = \frac{1}{30} \cdot x^3 - 0.5 \cdot x^2 + 8$ eine Stammfunktion der Funktion $f(x) = \frac{1}{10} \cdot x^2 - x$

Ableitungsfunktion und Stammfunktion III

Ergänze die Lücken des folgenden Satzes so, dass eine mathematisch korrekte Aussage entsteht. Die Funktion ____(1)____ ist ____(2)___ der Funktion $f(x) = a \cdot x^2 + b \cdot x$.

AN 3.1.05

(2)	
die zweite Ableitungsfunktion	
eine Stammfunktion	

die erste Ableitungsfunktion

(1)	
$a(x) = 2 \cdot x + b$	
$b(x) = \frac{a}{3} \cdot x^3 + \frac{b}{2} \cdot x^2 + x$	
$c(x) = 2 \cdot a$	

Stammfunktion einer Potenzfunktion

Zeige, dass die Funktion $G(x) = 6 \cdot \sqrt{x} + 1$ eine Stammfunktion der Funktion $g(x) = \frac{3}{\sqrt{x}}$ ist.

AN 3.1.06

digi.schule/ amk8Ban31a06

Grad einer Stammfunktion und Ableitungsfunktion

Kreuze alle korrekten Aussagen an.

Die Stammfunktion einer Polynomfunktion 2. Grades ist eine Polynomfunktion 3. Grades	
Die Stammfunktion einer konstanten Funktion ist eine lineare Funktion.	
Die Ableitungsfunktion einer Polynomfunktion 2. Grades ist eine konstante Funktion.	
Der Grad der Stammfunktion F einer Polynomfunktion f ist stets um 1 niedriger als der Grad von f.	
Der Grad der 2. Ableitungsfunktion f" einer Polynomfunktion f ist stets um 2 niedriger als der Grad von f.	

AN 3.1.07

digi.schule/ amk8Ban31a07

Aussagen über Integrale

Kreuze alle korrekten Aussagen an.

Jede Polynomfunktion kann nur ein mal integriert werden.	
Eine Polynomfunktion kann unbegrenzt oft integriert werden.	
Eine Polynomfunktion kann um einmal öfter integriert werden, als ihr Grad hoch ist.	
Eine Exponentialfunktion kann unbegrenzt oft abgeleitet werden.	
Jede reelle Funktion besitzt unendlich viele voneinander verschiedene Ableitungsfunktionen , aber nur eine einzige Stammfunktion.	

AN 3.1.08

digi.schule/ amk8Ban31a08

amk8Ban31a09

Ableitungsfunktion und Stammfunktion IV

Ergänze die Lücken des folgenden Satzes so, dass eine mathematisch korrekte Aussage entsteht. Ist n mit $n \in \mathbb{N}$ der Grad einer Polynomfunktion f, so hat ihre ____(1)____ stets den Grad ____(2)____ .

(1)	
Stammfunktion F	
erste Ableitungsfunktion f'	
zweite Ableitungsfunktion f"	

(2)	
n+2	
2·n	
n-1	

Stammfunktion einer Polynomfunktion

amk8Ban31a10

Gegeben ist die Polynomfunktion $f(x) = \frac{a}{x^2} + \sqrt{x}$ mit $a \in \mathbb{R} \setminus \{0\}$.

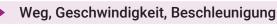
Kreuze alle möglichen Stammfunktionen von fan.

$$\Box F_1(x) = a \cdot x^{-2} + x^{\frac{1}{2}}$$

$$\Box F_2(x) = -\frac{a}{x} + \frac{2 \cdot \sqrt{x^3}}{3}$$

$$\Box \ F_1(x) = a \cdot x^{-2} + x^{\frac{1}{2}} \qquad \Box \ F_2(x) = -\frac{a}{x} + \frac{2 \cdot \sqrt{x^3}}{3} \qquad \Box \ F_3(x) = -a \cdot x^{-3} + \frac{2}{3 \cdot x^{1.5}} \qquad \Box \ F_4(x) = -a \cdot x^{-1} + \frac{2}{3} \cdot x^{\frac{3}{2}}$$

AN 3.1.11



Gegeben sind die Wegfunktion s(t) und deren zugehörige Geschwindigkeitsfunktion s'(t) = v(t) und die Beschleunigungsfunktion s''(t) = a(t)

Kreuze alle korrekten Aussagen an.

v(t) ist eine Ableitungsfunktion von a(t)	
s'(t) ist eine Stammfunktion von a(t)	
v(t) ist eine Stammfunktion von a(t)	
s(t) ist eine Stammfunktion von a(t).	
v(t) ist eine Ableitungsfunktion von s"(t).	

Geschwindigkeitsfunktion

Gegeben ist die Geschwindigkeitsfunktion $v(t) = c \cdot t^{\frac{1}{2}}$ mit $c \in \mathbb{R} \setminus \{0\}$.

Kreuze alle möglichen Stammfunktionen von v an.

$$\square \quad \mathsf{v'}(\mathsf{t}) = \frac{\mathsf{c}}{2} \cdot \mathsf{t}^{-\frac{1}{2}}$$

$$\Box s(t) = \frac{3 \cdot c}{2} \cdot t^{\frac{3}{2}} + 120$$

$$\Box a(t) = \frac{2}{3} \cdot c \cdot \sqrt[3]{t^2}$$

$$\square \ \ \mathsf{S}(\mathsf{t}) = \frac{2}{3} \cdot \mathsf{C} \cdot \sqrt{\mathsf{t}^3} + \mathsf{S}_0 \ , \ \mathsf{S}_0 \in \mathbb{R}$$